0

Data Science Last Project: Data Science - Pandas Pandas Pandas

My solution gives 4 correct out of 5 test cases, can someone help me out? Assume that there are two clusters among the given two-dimensional data points and two random points (0, 0), and (2, 2) are the initial cluster centroids. Calculate the euclidean distance between each data point and each of the centroid, assign each data point to its nearest centroid, then calculate the new centroid. If there's a tie, assign the data point to the cluster with centroid (0, 0). If none of the data points were assigned to the given centroid, return None.

19th Aug 2021, 12:13 AM
Shivam Panchal
Shivam Panchal - avatar
5 Antworten
+ 2
#Thanks John Robotane n = int(input()) import numpy as np def eudt(lista,listb): lista,listb=np.array(lista), np.array(listb) diff=lista-listb return ((diff[0]**2)+(diff[1]**2))**0.5 w=np.zeros((n,2)) for i in range(n): w[i,]=[float(j) for j in input().split()] distances=np.zeros((n,2)) for i in range(n): distances[i,]=[eudt(w[i,],[0,0]),eudt(w[i,],[2,2])] team0=w[(distances[:,0]<=distances[:,1]),] team2=w[(distances[:,0]>distances[:,1]),] if sum(distances[:,0]<=distances[:,1])!=0: zeromn=np.around(team0.mean(axis=0),2) if sum(distances[:,0]>distances[:,1])!=0: twoavg=np.around(team2.mean(axis=0),2) if sum(distances[:,0]<=distances[:,1])==0: zeromn=None elif sum(distances[:,0]>distances[:,1])==0: twoavg=None else: pass print(zeromn) print(twoavg)
14th Sep 2021, 7:35 AM
Brigido bergado jr
Brigido bergado jr - avatar
+ 2
Please like copy my answer
14th Sep 2021, 7:36 AM
Brigido bergado jr
Brigido bergado jr - avatar
+ 1
import numpy as np def distance(l1,l2): x1, y1 = l1 x2, y2 = l2 dis = np.sqrt(((x1-x2)**2)+((y1-y2)**2)) return dis def new_Centroid(pC): final_cen=[] for idx,cen in enumerate(pC): if len(cen)>1 and (None not in cen): centx=0 centy=0 for jt in cen: centx += jt[0] centy += jt[1] final_cen.append([centx/len(cen), centy/len(cen)]) elif None in cen: final_cen.append(None) else: final_cen.append(cen[0]) return final_cen[0], final_cen[1] centroids = [[0,0], [2,2]] n = int(input()) nums=[[float(j) for j in input().split()] for i in range(n)] output= [[distance(centroid,no) for centroid in centroids] for no in nums ] pC1=[] pC2=[] for ind,dat in enumerate(output): if (dat[0]< dat[1]) or (dat[0]==dat[1]): pC1.append(nums[ind]) else: pC2.append(nums[ind]) if len(pC1)<1: pC1.append(None) elif len(pC2)<1: pC2.append(None) ans = np.round(new_Centroid([pC1, pC2]),2) print(ans[0]) print(ans[1])
19th Aug 2021, 12:14 AM
Shivam Panchal
Shivam Panchal - avatar
+ 1
Update : I got it, here is added part for anyone looking for an answer: ans = new_Centroid([pC1, pC2]) if None in ans: nval = ans.index(None) a1=np.round(ans[1-nval],2) a2=ans[nval] print(a1) print(a2) else: ans = np.round(new_Centroid([pC1, pC2]),2) print(ans[0]) print(ans[1])
19th Aug 2021, 1:29 AM
Shivam Panchal
Shivam Panchal - avatar
+ 1
I don't know why my code gives only 4 out of 5 test cases. Can someone help me find the bug in my code? Thanks! n = int(input()) #print(n) import numpy as np import pandas as pd #x,y = [int(m) for m in input().split()] X = [] for i in range(1,n+1): X.append([float(x) for x in input().split()]) #x = [(i, j) for i, j in input().split()] Y = np.array(X) #The 2 centroids for clusters 0 and 1 Xc0 = np.array([0, 0]) Xc1 = np.array([2, 2]) #False formula for Euxlidean distance Y1 = np.sqrt((Xc0-Xc1)**2).sum() #True formula for Euclidean distance Y2 = np.sqrt(((Xc0-Xc1)**2).sum()) area0 = [] area1 = [] for dps in X: if np.sqrt(((dps-Xc0)**2).sum()) <= np.sqrt(((dps-Xc1)**2).sum()): area0.append(dps) else: area1.append(dps) cluster0 = np.array(area0) cluster1 = np.array(area1) #print(area0.sum()/area0.len()) print(cluster0.mean(axis = 0).round(2)) print(cluster1.mean(axis = 0).round(2)) #print(Y1)
25th Jul 2023, 8:57 AM
Andy Lam
Andy Lam - avatar