+ 1
Who has this fastest sqrt finding advanced code running?
float Q_rsqrt( float number ) { long i; float x2, y; const float threehalfs = 1.5F; x2 = number * 0.5F; y = number; i = * ( long * ) &y; // evil floating point bit level hacking i = 0x5f3759df - ( i >> 1 ); // what the fuck? y = * ( float * ) &i; y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed return y; }
2 Antworten
+ 4
From Java.lang.StrictMath:
public static double sqrt(double x)
{
if (x < 0)
return Double.NaN;
if (x == 0 || ! (x < Double.POSITIVE_INFINITY))
return x;
// Normalize x.
long bits = Double.doubleToLongBits(x);
int exp = (int) (bits >> 52);
if (exp == 0) // Subnormal x.
{
x *= TWO_54;
bits = Double.doubleToLongBits(x);
exp = (int) (bits >> 52) - 54;
}
exp -= 1023; // Unbias exponent.
bits = (bits & 0x000fffffffffffffL) | 0x0010000000000000L;
if ((exp & 1) == 1) // Odd exp, double x to make it even.
bits <<= 1;
exp >>= 1;
// Generate sqrt(x) bit by bit.
bits <<= 1;
long q = 0;
long s = 0;
long r = 0x0020000000000000L; // Move r right to left.
while (r != 0)
{
long t = s + r;
if (t <= bits)
{
s = t + r;
bits -= t;
q += r;
}
bits <<= 1;
r >>= 1;
}
// Use floating add to round correctly.
if (bits != 0)
q += q & 1;
return Double.longBitsToDouble((q >> 1) + ((exp + 1022L) << 52));
}
+ 2
Thanks a lot.