Hey Steven, thanks again.
My problem is not the targets.
Its the Features.
My code reads all DataFrame and I want to manipulate what features will be used in the regression calculus.
Let me post some more of my code, maybe that way you will get the hole picture.
df = pd.read_csv(Path + FileName)
X = df[['NumConc','3F6F',... ,'TOT_SunQ-LI190','MAX_SunQ-I190']].values
y = df['N1'].values
pred = [[62,3,2020,8,31,4,... ,104.367,649.7,339.66,335.79]]
With this first lines of code, I get the "df" with all columns, "X" with all Features, "y" with actual Target to be used and "pred" with values for the prediction.
But I want to use only some of the features... thats why i use;
i = [0,1,3,6,13,14,15,16,17,18,19,20,21,23,24,26,30,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58]
This way I specify what features to be used from all imported ones.
So, I remake my X to use only what i[n] has;
X = df.iloc[:,[7+i[0],7+i[1],7+i[2],7+i[3],7+i[4],7+i[5],7+i[6],7+i[7],7+i[8],7+i[9], 7+i[10],7+i[11],7+i[12],7+i[13],7+i[14],7+i[15],7+i[16],7+i[17],7+i[18],7+i[19],7+i[20],7+i[21],7+i[22],7+i[23],7+i[24],7+i[25],7+i[26],7+i[27],
7+i[28],7+i[29],7+i[30],7+i[31],7+i[32],7+i[33],7+i[34],7+i[35],7+i[36],7+i[37],7+i[38],7+i[39],7+i[40],7+i[41],7+i[42],7+i[43] ]]
for m in range(len(i)):
p[m] = pred[0][i[m]]
pred = [[p[0],p[1],p[2],p[3],p[4],p[5],p[6],p[7],p[8],p[9],p[10],p[11],p[12],p[13],p[14],p[15],p[16],p[17],p[18],p[19],p[20],p[21],p[22],p[23],p[24],p[25],p[26],p[27],p[28],p[29],p[30],p[31],p[32],p[33],p[34],p[35],p[36],p[37],p[38],p[39],p[40],p[41],p[42],p[43] ]]
Now, if I take out or add new features in i[n], then need to change X and pred... and that's what i wanted to make automatic in these 2 last code lines.
Sorry to insist in this issue, but now its also a challange to me, making you understand my problem. :D
FS