+ 4

Is there any easy way to solve boolean function and find Literals?😅

i couldn't do this proove,by dual (x+y)(x'+z)(y+z)=(x+y)(x'+z) should applying complement on LHS?

10th Apr 2018, 12:01 PM
Jay Jay
Jay Jay - avatar
15 odpowiedzi
+ 6
you mean LHS, RHS? L.H.S. left-hand side R.H.S. right-hand side😅😅
23rd May 2018, 2:24 AM
Jay Jay
Jay Jay - avatar
+ 5
Zeke Williams i meant,boolean postulates i dont know in-depth of it, but we are taught this in school to find literals or to simplify make function short in length
10th Apr 2018, 12:44 PM
Jay Jay
Jay Jay - avatar
+ 4
yeah, yours a good idea, But I just solved it, sorry for trouble its Been Hours and i just solved it now taking complement of whole function LHS. then RHS. demorgan law x'y'+xz'+y'z'=x'y'+ xz' prooving the above statement now by postulates, multiply (x+x') to y'z' simplify and tada proof🤓
10th Apr 2018, 12:41 PM
Jay Jay
Jay Jay - avatar
+ 4
(x+y)(x'+z)(y+z)=(x+y)(x'+z) LHS: (x+y)(x'+z)(y+z) (xx'+xz+x'y+yz)(y+z) (0+xz+x'y+yz)(y+z) xyz+xz+x'y+x'yz+yz+yz xz(y+1)+x'y+yz(x'+1+1) xz+x'y+yz==LHS RHS: (x+y)(x'+z) xx'+x'y+xz+yz 0+x'y+xz+yz xz+x'y+yz====RHS LHS= RHS PROVED
22nd May 2018, 5:46 PM
Vijay Kumar Kanchukommala
Vijay Kumar Kanchukommala - avatar
+ 3
Please explain more. I'm not sure why this algebra expression has anything to do with Boolean logic. What exactly are you solving?
10th Apr 2018, 12:22 PM
Zeke Williams
Zeke Williams - avatar
+ 3
Alright then! I have no idea what that is about. I've been through 2 years of calculus, so I thought I would know, but I'm glad you solved it :)
10th Apr 2018, 12:47 PM
Zeke Williams
Zeke Williams - avatar
+ 3
:)
10th Apr 2018, 12:53 PM
Jay Jay
Jay Jay - avatar
+ 3
Sid haha yeah
23rd May 2018, 2:52 AM
Vijay Kumar Kanchukommala
Vijay Kumar Kanchukommala - avatar
+ 2
Edited
10th Apr 2018, 12:25 PM
Jay Jay
Jay Jay - avatar
+ 2
sorry edited again,
10th Apr 2018, 12:29 PM
Jay Jay
Jay Jay - avatar
+ 2
But which postulates, and proove what? That's just an expression. EDIT: By dual what?
10th Apr 2018, 12:30 PM
Zeke Williams
Zeke Williams - avatar
+ 2
Silly
11th Apr 2018, 1:44 AM
Javier Carrion
Javier Carrion - avatar
+ 1
You mean like: xx' + xz + x'y (y + z) = xx' + xz + x'z y + z = 1
10th Apr 2018, 12:33 PM
Zeke Williams
Zeke Williams - avatar
+ 1
No caps please internet etiquette
22nd May 2018, 7:21 PM
Javier Carrion
Javier Carrion - avatar
- 2
can't understand.... actually I never visited a coding school.... I am totally new in programming...(sorry for bad english)
13th Apr 2018, 11:37 AM
ALBERT SAURAV
ALBERT SAURAV - avatar