how does prediction with keras work?
so, I've been racking my head over the following code. please help me. # first neural network with keras tutorial from numpy import loadtxt from keras.models import Sequential from keras.layers import Dense # load the dataset dataset = loadtxt('pima-indians-diabetes.csv', delimiter=',') # split into input (X) and output (y) variables X = dataset[:,0:8] y = dataset[:,8] # define the keras model model = Sequential() model.add(Dense(12, input_dim=8, activation='relu')) model.add(Dense(8, activation='relu')) model.add(Dense(1, activation='sigmoid')) # compile the keras model model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # fit the keras model on the dataset model.fit(X, y, epochs=150, batch_size=10) # evaluate the keras model accuracy = model.evaluate(X, y) print('Accuracy: %.2f' % (accuracy*100)) any help would be greatly appreciated. thank you!